Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Microb Cell ; 11: 106-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638559

RESUMO

Gut microbiota has complex immune functions, related to different pathologies, including multiple sclerosis (MS).This study evaluated the influence of treatments on gut microbiota in people with MS (PwMS). The research comprised 60 participants, including 39 PwMS and 21 healthy controls (HC). Among the PwMS, 20 were prescribed a disease-modifying therapy (DMT), either interferon beta1a or teriflunomide, while 19 received a combination of classical DMT and an immunoglobulin Y (IgY) supplement. For each participant, two sets of gut samples were collected: one at the study's outset and another after two months. Alpha and beta diversity analyses revealed no significant differences between groups. In comparison to the HC, the MS group exhibited an increase in Prevotella stercorea and a decrease in Faecalibacterium prausnitzii. Following treatment, individuals with MS showed enrichment in Lachnospiraceae and Streptococcus. The second sample, compared to the first one, demonstrated an increase in Bifidobacterium angulatum and a decrease in Oscillospira for individuals with MS. Gut microbiota diversity in PwMS is not significantly different to HC.However, specific taxonomic changes indicate the presence of a dysbiosis state. The use of DMTs and immunoglobulin Y supplements may contribute to alterations in microbial composition, potentially leading to the restoration of a healthier microbiome.

2.
Brain Sci ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38539631

RESUMO

Multiple sclerosis (MS) is a demyelinating central nervous system disease that leads to neurological disability. Brain-derived neurotrophic factors (BDNFs) are neurotrophins involved in neurodegenerative disorders. This study analysed the relationship between serum BDNF, neurological disability and different MS treatments. We included 63 people with MS (PwMS), with relapsing-remitting MS or clinically isolated syndrome, and 16 healthy controls (HCs). We analysed the serum levels of BDNF and MS specific disability tests (Expanded Disability Status Scale, timed 25-foot walk test, nine-hole peg test), at baseline (V0) and after one year of interferon beta1a or teriflunomide treatment (V1). Baseline BDNF values were not different between the PwMS and HCs (p = 0.85). The BDNF levels were higher in PwMS vs. HCs after treatment (p = 0.003). BDNF was not related to last-year relapses or by the disease duration (all p > 0.05). The overall values for the PwMS decreased after one year (p < 0.001). Both treatments implied a similar reduction. BDNF was not related to neurological disability (p > 0.05). BDNF values were not influenced by the lesion burden, active lesions, or new lesions on MRI (p > 0.05). In our cohort, the PwMS had higher BDNF levels compared to the HCs after one year of treatment. BDNF was not related to clinical or paraclinical disease severity signs.

3.
J Gastrointestin Liver Dis ; 33(1): 115-122, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554422

RESUMO

The role of gut microbiota in autoimmune disorders like multiple sclerosis is gaining attention. Multiple sclerosis is characterized by inflammation, demyelination, and neurodegeneration in the central nervous system. Alterations in gut microbiota have been linked to multiple sclerosis development, with decreased beneficial bacteria and increased harmful species. The gut-brain axis is a complex interface influencing bidirectional interactions between the gut and the brain. Dysbiosis, an imbalance in gut microbiota, has been associated with autoimmune diseases. The influence of gut microbiota in multiple sclerosis is reversible, making it a potential therapeutic target. Probiotics, prebiotics, and fecal microbiota transplantation have shown promise in multiple sclerosis treatment, with positive effects on inflammation and immune regulation. Immunoglobulin Y (IgY) supplements derived from chicken egg yolk have potential as nutraceuticals or dietary supplements. IgY technology has been effective against various infections, and studies have highlighted its role in modulating gut microbiota and immune responses. Clinical trials using IgY supplements in multiple sclerosis are limited but have shown positive outcomes, including reduced symptoms, and altered immune responses. Future research directions involve understanding the mechanisms of IgY's interaction with gut microbiota, optimal dosage determination, and long-term safety assessments. Combining IgY therapy with other interventions and investigating correlations between microbiota changes and clinical outcomes are potential avenues for advancing multiple sclerosis treatment with IgY supplements.


Assuntos
Doenças Autoimunes , Imunoglobulinas , Esclerose Múltipla , Probióticos , Humanos , Esclerose Múltipla/terapia , Disbiose/microbiologia , Disbiose/terapia , Suplementos Nutricionais/efeitos adversos , Probióticos/uso terapêutico , Inflamação
4.
Rom J Morphol Embryol ; 64(3): 437-442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867362

RESUMO

Especially in molars that may have sometimes aberrant additional root canals, the complexity of tooth internal morphology in individual cases sometimes does not match to admitted classification rules and underlines the risk of missed anatomy during the endodontic management. To our knowledge, a permanent mandibular second molar with independent five roots, three mesial and two distal, each of them harboring a single canal, was not yet reported. Despite the treatment difficulties this tooth could be successfully approached by using dental operative microscope and cone-beam computed tomography (CBCT) with small field of view. Though CBCT is not a routine imagistic examination, in case of atypical tooth anatomy aiming to establish adequate diagnosis and treatment plan, the successful clinical outcome prevails over the irradiation dose.


Assuntos
Mandíbula , Raiz Dentária , Humanos , Raiz Dentária/diagnóstico por imagem , Mandíbula/diagnóstico por imagem , Dente Molar/diagnóstico por imagem , Dente Molar/anatomia & histologia , Tomografia Computadorizada de Feixe Cônico/métodos , Cavidade Pulpar/diagnóstico por imagem
5.
Polymers (Basel) ; 15(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37514413

RESUMO

This paper describes the preparation of new PEG6000-silica-MWCNTs composites as shape-stabilized phase change materials (ssPCMs) for application in latent heat storage. An innovative method was employed to obtain the new organic-inorganic hybrid materials, in which both a part of the PEG chains, used as the phase change material, and a part of the hydroxyl functionalized multiwall carbon nanotubes (MWCNTs-OH), used as thermo-conductive fillers, were covalently connected by newly formed urethane bonds to the in-situ-generated silica matrix. The study's main aim was to investigate the optimal amount of PEG6000 that can be added to the fixed sol-gel reaction mixture so that no leakage of PEG occurs after repeated heating-cooling cycles. The findings show that the optimum PEG6000/NCOTEOS molar ratio was 2/1 (~91.5% PEG6000), because both the connected and free PEG chains interacted strongly with the in-situ-generated silica matrix to form a shape-stabilized material while preserving high phase-transition enthalpies (~153 J/G). Morphological and structural findings obtained by SEM, X-ray and Raman techniques indicated a distribution of the silica component in the amorphous phase (~27% for the optimum composition) located among the crystalline lamellae built by the folded chains of the PEG component. This composite maintained good chemical stability after a 450-cycle thermal test and had a good storage efficiency (~84%).

6.
Mult Scler Relat Disord ; 76: 104825, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37320938

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that leads to neurological impairment and disability, mostly in young-aged people. Depression and anxiety are important associated mental disorders for people with MS (PwMS), which influence their life quality. During the COVID-19 pandemic, fear and stress levels enhanced dramatically for the general population, but mostly in progressive chronic pathologies such as MS. AIM: This study aimed to analyze the dynamic of psychological aspects in PwMS pre-pandemic and during pandemic, their connection with clinical outcomes, and with the coronavirus disease. METHODS: We included 95 PwMS with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS), who were first evaluated 4 years before the pandemic outbreak and the second time 2 years after. They completed a series of psychological tests for depression, anxiety, negative automatic thoughts, and stress: Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory (BAI), Endler Multidimensional Anxiety Scales (EMAS), Automatic Thoughts Questionnaire (ATQ). A neurologist evaluated the Expanded Disability Status Scale (EDSS) and a COVID-19 survey was completed by 78 patients. RESULTS: During the pandemic, depression was encountered in 9.47% of PwMS, only 1.05% with a severe form, and 6.3% with suicidal thoughts, while anxiety was more frequent (39% of cases). Compared to the pre-pandemic period, depression levels remained stable over time (p = 0.55), anxiety was reduced (p<0.001), and stress levels significantly increased (p = 0.001). Some social aspects, such as having sufficient income, reduced the risk for psychological comorbidities. There was a mild correlation between emotional well-being and neurological disability. Of all patients who responded to the survey, 53.84% had previous COVID-19 infections, no patient was hospitalized and 69.23% were vaccinated. There was no relationship between the COVID-19 infection and psychological test results. CONCLUSION: During the pandemic, in the MS population depression remained stable, anxiety decreased, and stress levels were enhanced compared to the pre-pandemic period. Psychiatric comorbidities were not influenced by the coronavirus infection.


Assuntos
COVID-19 , Esclerose Múltipla , Humanos , Idoso , COVID-19/complicações , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/complicações , Pandemias , SARS-CoV-2 , Depressão/epidemiologia , Depressão/psicologia , Ansiedade/epidemiologia , Estresse Psicológico/epidemiologia
7.
Gels ; 9(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37367142

RESUMO

Synthetic organic pigments from the direct discharge of textile effluents are considered as colossal global concern and attract the attention of scholars. The efficient construction of heterojunction systems involving precious metal co-catalysis is an effective strategy for obtaining highly efficient photocatalytic materials. Herein, we report the construction of a Pt-doped BiFeO3/O-g-C3N4 (Pt@BFO/O-CN) S-scheme heterojunction system for photocatalytic degradation of aqueous rhodamine B (RhB) under visible-light irradiation. The photocatalytic performances of Pt@BFO/O-CN and BFO/O-CN composites and pristine BiFeO3 and O-g-C3N4 were compared, and the photocatalytic process of the Pt@BFO/O-CN system was optimized. The results exhibit that the S-scheme Pt@BFO/O-CN heterojunction has superior photocatalytic performance compared to its fellow catalysts, which is due to the asymmetric nature of the as-constructed heterojunction. The as-constructed Pt@BFO/O-CN heterojunction reveals high performance in photocatalytic degradation of RhB with a degradation efficiency of 100% achieved after 50 min of visible-light irradiation. The photodegradation fitted well with pseudo-first-order kinetics proceeding with a rate constant of 4.63 × 10-2 min-1. The radical trapping test reveals that h+ and •O2- take the leading role in the reaction, while the stability test reveals a 98% efficiency after the fourth cycle. As established from various interpretations, the considerably enhanced photocatalytic performance of the heterojunction system can be attributed to the promoted charge carrier separation and transfer of photoexcited carriers, as well as the strong photo-redox ability established. Hence, the S-scheme Pt@BFO/O-CN heterojunction is a good candidate in the treatment of industrial wastewater for the mineralization of organic micropollutants, which pose a grievous threat to the environment.

8.
Gels ; 9(5)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37233016

RESUMO

Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide's polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.

9.
Pharmaceutics ; 15(5)2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37242662

RESUMO

The skin is a complex and selective system from the perspective of permeability to substances from the external environment. Microemulsion systems have demonstrated a high performance in encapsulating, protecting and transporting active substances through the skin. Due to the low viscosity of microemulsion systems and the importance of a texture that is easy to apply in the cosmetic and pharmaceutical fields, gel microemulsions are increasingly gaining more interest. The aim of this study was to develop new microemulsion systems for topical use; to identify a suitable water-soluble polymer in order to obtain gel microemulsions; and to study the efficacy of the developed microemulsion and gel microemulsion systems in the delivery of a model active ingredient, namely curcumin, into the skin. A pseudo-ternary phase diagram was developed using AKYPO® SOFT 100 BVC, PLANTACARE® 2000 UP Solution and ethanol as a surfactant mix; caprylic/capric triglycerides, obtained from coconut oil, as the oily phase; and distilled water. To obtain gel microemulsions, sodium hyaluronate salt was used. All these ingredients are safe for the skin and are biodegradable. The selected microemulsions and gel microemulsions were physicochemically characterized by means of dynamic light scattering, electrical conductivity, polarized microscopy and rheometric measurements. To evaluate the efficiency of the selected microemulsion and gel microemulsion to deliver the encapsulated curcumin, an in vitro permeation study was performed.

10.
Materials (Basel) ; 16(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37049167

RESUMO

The continuous degradation of cultural heritage artifacts (due to different factors, including the rising air pollution, climate change or excessive biological activity, among others) requires the continuous development of protection strategies, technologies and materials. In this regard, polyelectrolytes have offered effective ways to fight against degradation but also to conserve the cultural heritage objects. In this review, we highlight the key developments in the creation and use of polyelectrolytes for the preservation, consolidation and cleaning of the cultural heritage artifacts (with particular focus on stone, metal and artifacts of organic nature, such as paper, leather, wood or textile). The state of the art in this area is presented, as well as future development perspectives.

11.
J Neuroimmunol ; 378: 578087, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058852

RESUMO

Gut microbiota, the total microorganisms in our gastrointestinal tract, might have an implication in multiple sclerosis (MS), a demyelinating neurological disease. Our study included 50 MS patients and 21 healthy controls (HC). Twenty patients received a disease modifying therapy (DMT), interferon beta1a or teriflunomide, 19 DMT combined with homeopathy and 11 patients accepted only homeopathy. We collected in total 142 gut samples, two for each individual: at the study enrolment and eight weeks after treatment. We compared MS patients' microbiome with HC, we analysed its evolution in time and the effect of interferon beta1a, teriflunomide and homeopathy. There was no difference in alpha diversity, only two beta diversity results related to homeopathy. Compared to HC, untreated MS patients had a decrease of Actinobacteria, Bifidobacterium, Faecalibacterium prauznitzii and increased Prevotella stercorea, while treated patients presented lowered Ruminococcus and Clostridium. Compared to the initial sample, treated MS patients had a decrease of Lachnospiraceae and Ruminococcus and an increased Enterococcus faecalis. Eubacterium oxidoreducens was reduced after homeopathic treatment. The study revealed that MS patients may present dysbiosis. Treatment with interferon beta1a, teriflunomide or homeopathy implied several taxonomic changes. DMTs and homeopathy might influence the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/induzido quimicamente , Crotonatos/uso terapêutico , Interferon beta-1a
12.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904451

RESUMO

Synthetic organic pigments like xanthene and azo dyes from the direct discharge of textile effluents are considered colossal global issues and attract the concern of scholars. Photocatalysis continues to be a very valuable pollution control method for industrial wastewater. Incorporations of metal oxide catalysts such as zinc oxide (ZnO) on mesoporous Santa Barbara Armophous-15 (SBA-15) support to improve catalyst thermo-mechanical stability have been comprehensively reported. However, charge separation efficiency and light absorption of ZnO/SBA-15 continue to be limiting its photocatalytic activity. Herein, we report a successful preparation of Ruthenium-induced ZnO/SBA-15 composite via conventional incipient wetness impregnation technique with the aim of boosting the photocatalytic activity of the incorporated ZnO. Physicochemical properties of the SBA-15 support, ZnO/SBA-15, and Ru-ZnO/SBA-15 composites were characterized by X-ray diffraction (XRD), N2 physisorption isotherms at 77 K, Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and transmission electron microscopy (TEM). The characterization outcomes exhibited that ZnO and ruthenium species have been successfully embedded into SBA-15 support, andtheSBA-15 support maintains its structured hexagonal mesoscopic ordering in both ZnO/SBA-15 and Ru-ZnO/SBA-15 composites. The photocatalytic activity of the composite was assessed through photo-assisted mineralization of aqueous MB solution, and the process was optimized for initial dye concentration and catalyst dosage. 50 mg catalyst exhibited significant degradation efficiency of 97.96% after 120 min, surpassing the efficiencies of 77% and 81% displayed by 10 and 30 mg of the as-synthesized catalyst. The photodegradation rate was found to decrease with an increase in the initial dye concentration. The superior photocatalytic activity of Ru-ZnO/SBA-15 over the binary ZnO/SBA-15 may be attributed to the slower recombination rate of photogenerated charges on the ZnO surface with the addition of ruthenium.

13.
Pharmaceutics ; 15(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36839693

RESUMO

Salecan, a kind of polysaccharide, is produced by the Agrobacterium ZX09 salt tolerant strain. In this study, green crosslinked citric acid-salecan hydrogels are explored as novel materials with a high potential for use in regenerative medicine. The impact of salecan and citric acid on the final crosslinked hydrogels was intensively studied and estimated in terms of the whole physicochemical properties and antimicrobial activity. FTIR spectra demonstrated the successful green crosslinking of salecan through its esterification with citric acid where the formation of strong covalent bonds collaboratively helped to stabilize the entire hydrogel systems in a wet state. Hydrogels presented a microporous morphology, good swelling capacity, pH responsiveness, great mechanical stability under stress conditions and good antibacterial activity, all related to the concentration of the biopolymers used in the synthesis step. Additionally, salecan hydrogels were preliminary investigated as printing inks. Thanks to their excellent rheological behavior, we optimized the citrate-salecan hydrogel inks and printing parameters to render 3D constructs with great printing fidelity and integrity. The novel synthesized salecan green crosslinked hydrogels enriches the family of salecan-derived hydrogels. Moreover, this work not only expands the application of salecan hydrogels in various fields, but also provides a new potential option of designing salecan-based 3D printed scaffolds for customized regenerative medicine.

14.
Materials (Basel) ; 16(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36769988

RESUMO

A multitude of dressings have been developed to promote wound repair, such as membranes, foams, hydrocolloids and hydrogels. In this study, a crosslinked polysaccharide hydrogel was mixed with a bioactive ingredient to synthesize a novel nanocomposite material to be used in wound healing. Variation of the ratio between hydrogel components was followed and its effect was analyzed in regard to swelling, degradation rate and thermo-mechanical behavior. The resulting crosslinked structures were characterized by FTIR and microscopy analyses. The antimicrobial activity of the crosslinked hydrogels loaded with bioactive agent was evaluated using two bacterial strains (Gram-positive Staphylococcus aureus and Gram-negative bacteria Escherichia Coli). All the results showed that the new synthesized biopolymer nanocomposites have adequate properties to be used as antibacterial wound dressings.

15.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363186

RESUMO

The structure-property relationship of dielectric elastomers, as well as the methods of improving the control of this relationship, has been widely studied over the last few years, including in some of our previous works. In this paper, we study the control, improvement, and correlation, for a significant range of temperatures, of the mechanical and dielectric properties of polystyrene-b-(ethylene-co-butylene)-b-styrene (SEBS) and maleic-anhydride-grafted SEBS (SEBS-MA) by using graphite (G) as filler in various concentrations. The aim is to analyze the suitability of these composites for converting electrical energy into mechanical energy or vice versa. The dielectric spectroscopy analysis performed in the frequency range of 10 to 1 MHz and at temperatures between 27 and 77 °C emphasized an exponential increase in real permittivity with G concentration, a low level of dielectric losses (≈10-3), as well as the stability of dielectric losses with temperature for high G content. These results correlate well with the increase in mechanical stiffness with an increase in G content for both SEBS/G and SEBS-MA/G composites. The activation energies for the dielectric relaxation processes detected in SEBS/G and SEBS-MA/G composites were also determined and discussed in connection with the mechanical, thermal, and structural properties resulting from thermogravimetric analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses.

16.
Pharmaceutics ; 14(10)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36297572

RESUMO

Apart from its well-known activity as an antimicrobial agent, Curcumin (CURC) has recently started to arouse interest as a photosensitizer in the photodynamic therapy of bacterial infections. The aim of the present study was to evidence the influence of the encapsulation of Curcumin into polymeric micelles on the efficiency of photoinduced microbial inhibition. The influence of the hydrophobicity of the selected Pluronics (P84, P123, and F127) on the encapsulation, stability, and antimicrobial efficiency of CURC-loaded micelles was investigated. In addition, the size, morphology, and drug-loading capacity of the micellar drug delivery systems have been characterized. The influence of the presence of micellar aggregates and unassociated molecules of various Pluronics on the membrane permeability was investigated on both normal and resistant microbial strains of E. coli, S. aureus, and C. albicans. The antimicrobial efficiency on the common pathogens was assessed for CURC-loaded polymeric micelles in dark conditions and activated by blue laser light (470 nm). Significant results in the reduction of the microorganism's growth were found in cultures of C. albicans, even at very low concentrations of surfactants and Curcumin. Unlike the membrane permeabilization effect of the monomeric solution of Pluronics, reported in the case of tumoral cells, a limited permeabilization effect was found on the studied microorganisms. Encapsulation of the Curcumin in Pluronic P84 and P123 at very low, nontoxic concentrations for photosensitizer and drug-carrier, produced CURC-loaded micelles that prove to be effective in the light-activated inhibition of resistant species of Gram-positive bacteria and fungi.

17.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142243

RESUMO

The present work aims to show how the main properties of poly(methacrylic acid) (PMAA) hydrogels can be engineered by means of several silicon-based fillers (Laponite XLS/XLG, montmorillonite (Mt), pyrogenic silica (PS)) employed at 10 wt% concentration based on MAA. Various techniques (FT-IR, XRD, TGA, SEM, TEM, DLS, rheological measurements, UV-VIS) were used to comparatively study the effect of these fillers, in correlation with their characteristics, upon the structure and swelling, viscoelastic, and water decontamination properties of (nano)composite hydrogels. The experiments demonstrated that the nanocomposite hydrogel morphology was dictated by the way the filler particles dispersed in water. The equilibrium swelling degree (SDe) depended on both the pH of the environment and the filler nature. At pH 1.2, a slight crosslinking effect of the fillers was evidenced, increasing in the order Mt < Laponite < PS. At pH > pKaMAA (pH 5.4; 7.4; 9.5), the Laponite/Mt-containing hydrogels displayed a higher SDe as compared to the neat one, while at pH 7.4/9.5 the PS-filled hydrogels surprisingly displayed the highest SDe. Rheological measurements on as-prepared hydrogels showed that the filler addition improved the mechanical properties. After equilibrium swelling at pH 5.4, G' and G" depended on the filler, the Laponite-reinforced hydrogels proving to be the strongest. The (nano)composite hydrogels synthesized displayed filler-dependent absorption properties of two cationic dyes used as model water pollutants, Laponite XLS-reinforced hydrogel demonstrating both the highest absorption rate and absorption capacity. Besides wastewater purification, the (nano)composite hydrogels described here may also find applications in the pharmaceutical field as devices for the controlled release of drugs.


Assuntos
Nanocompostos , Poluentes da Água , Bentonita , Corantes , Preparações de Ação Retardada , Hidrogéis/química , Metacrilatos , Nanocompostos/química , Nanogéis , Silicatos , Silício , Dióxido de Silício , Espectroscopia de Infravermelho com Transformada de Fourier , Água
18.
Materials (Basel) ; 14(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946776

RESUMO

The present work aims at comparatively studying the effects of the concentrations of a monomer (10-30 wt% based on the whole hydrogel composition), crosslinking agent (1-3 mol% based on the monomer), and reinforcing agent (montmorillonite-MMT, 1-3 wt.% based on the whole hydrogel composition) on the swelling and viscoelastic properties of the crosslinked hydrogels prepared from methacrylic acid (MAA) and N,N'-methylenebisacrylamide (BIS) in the presence of K2S2O8 in aqueous solution. The viscoelastic measurements, carried out on the as-prepared hydrogels, showed that the monomer concentration had the largest impact, its three-time enhancement causing a 30-fold increase in the storage modulus, as compared with only a fivefold increase in the case of the crosslinking agent and 1.5-fold increase for MMT in response to a similar threefold concentration increase. Swelling studies, performed at three pH values, revealed that the water absorption of the hydrogels decreased with increasing concentration of both the monomer and crosslinking agent, with the amplitude of the effect of concentration modification being similar at pH 5.4 and 7.4 in both cases, but very different at pH 1.2. Further, it was shown that the increased pH differently influenced the swelling degree in the case of the hydrogel series in which the concentrations of the monomer and crosslinking agent were varied. In contrast to the effect of the monomer and crosslinking agent concentrations, the increase in the MMT amount in the hydrogel resulted in an increased swelling degree at pH 5.4 and 7.4, while at pH 1.2, a slight decrease in the water absorption was noticed. The hydrogel crosslinking density determinations revealed that this parameter was most affected by the increase in the monomer concentration.

19.
Molecules ; 26(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916520

RESUMO

In the present work, the properties of ZnO nanoparticles obtained using an eco-friendly synthesis (biomediated methods in microwave irradiation) were studied. Saponaria officinalis extracts were used as both reducing and capping agents in the green nanochemistry synthesis of ZnO. Inorganic zinc oxide nanopowders were successfully prepared by a modified hydrothermal method and plant extract-mediated method. The influence of microwave irradiation was studied in both cases. The size, composition, crystallinity and morphology of inorganic nanoparticles (NPs) were investigated using dynamic light scattering (DLS), powder X-ray diffraction (XRD), SEM-EDX microscopy. Tunings of the nanochemistry reaction conditions (Zn precursor, structuring agent), ZnO NPs with various shapes were obtained, from quasi-spherical to flower-like. The optical properties and photocatalytic activity (degradation of methylene blue as model compound) were also investigated. ZnO nanopowders' antibacterial activity was tested against Gram-positive and Gram-negative bacterial strains to evidence the influence of the vegetal extract-mediated synthesis on the biological activity.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Saponaria/química , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Catálise , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Química Verde , Humanos , Luz , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Micro-Ondas , Processos Fotoquímicos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Óxido de Zinco/química
20.
Pharmaceutics ; 13(4)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916981

RESUMO

Gel microemulsion combines the advantages of the microemulsion, which can encapsulate, protect and deliver large quantities of active ingredients, and the gel, which is so appreciated in the cosmetic industry. This study aimed to develop and characterize new gel microemulsions suitable for topical cosmetic applications, using grape seed oil as the oily phase, which is often employed in pharmaceuticals, especially in cosmetics. The optimized microemulsion was formulated using Tween 80 and Plurol® Diisostearique CG as a surfactant mix and ethanol as a co-solvent. Three different water-soluble polymers were selected in order to increase the viscosity of the microemulsion: Carbopol® 980 NF, chitosan, and sodium hyaluronate salt. All used ingredients are safe, biocompatible and biodegradable. Curcumin was chosen as a model drug. The obtained systems were physico-chemically characterized by means of electrical conductivity, dynamic light scattering, polarized microscopy and rheometric measurements. Evaluation of the cytotoxicity was accomplished by MTT assay. In the final phase of the study, the release behavior of Curcumin from the optimized microemulsion and two gel microemulsions was evaluated. Additionally, mathematical models were applied to establish the kinetic release mechanism. The obtained gel microemulsions could be effective systems for incorporation and controlled release of the hydrophobic active ingredients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA